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Introduction
• Heterogeneous data provides opportunities for causal inference and for learning
prediction models that generalize to unseen environments.
• Perturbations may affect both means and variances of the variables, while previous
methods only exploit shifts in the means.
•We propose Distributionally Robust predictions via Invariant Gradients (DRIG), a
method that leverages perturbations in the form of both mean and variance shifts
for robust predictions.
•Viewing causality as an extreme case of distributional robustness, we investigate
the causal identifiability of DRIG under various scenarios of interventions and causal
structures.

Linear structural causal model
Covariates X ∈ Rp and response variable Y ∈ R with latent variables H.
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• Training data from multiple environments e ∈ E :(︃
Xe
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)︃
= B⋆

(︃
Xe

Ye

)︃
+ ϵ+ δe, (1)

where b⋆ := B⋆p+1,1:p denotes the causal effects and ϵ ⊥⊥ δe.

• Reference environment: 0 ∈ E such that
∑︀

e∈E ω
eE[δeδe⊤] ⪰ E[δ0δ0T]. e.g., an

observational environment with no intervention, i.e., δ0 ≡ 0.
• Test distribution under new interventions:(︃

Xv

Yv

)︃
= B⋆

(︃
Xv

Yv

)︃
+ ϵ+ v, (2)

Our method DRIG
Given a scalar γ ≥ 0, the population DRIG: bopt

γ
= rgminbLγ(b) where

Lγ(b) := E[ℓ(X0, Y0; b)] + γ
∑︁
e∈E

ωe (︀E[ℓ(Xe, Ye; b)] − E[ℓ(X0, Y0; b)]
)︀
, (3)

where ℓ(x, y; b) := (y − b⊤x)2 and γ is a hyperparameter.
Special cases: interpolation between OLS and the causal parameter:
• γ = 0: observational OLS
• γ = 1: pooled OLS
• γ→∞: causal parameter (when identifiable)
• δe’s are deterministic: anchor regression with categorical anchors
In the limit of γ→∞, the DRIG solution bopt

γ
satisfies gradient invariance:

Definition (Gradient invariance)

A regression parameter b is said to satisfy the gradient invariance (GI) condition if∑︀
e∈E ω

e∇bE[ℓ(Xe, Ye; b)] = ∇bE[ℓ(X0, Y0; b)].
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Figure: Trade-off between prediction and causality

Distributional robustness
Minimizing the worst-case risk over test perturbations v ∈ C ⊆ Rp+1, i.e.

rgmin
b∈Rp

sp
v∈C

Ev[ℓ(Xv, Yv; b)] . (4)

Theorem (Robustness guarantee)

The prediction model by DRIG is the solution to the worst-case risk (4) with

C γ

DRIG :=

{︃
v ∈ Rp+1 : E[vv⊤] ⪯ γ

∑︁
e∈E

ωe
(︁
Se − S0 + μeμe⊤

)︁}︃
,

where Se := cov(δe) and μe := E[δe]

• Strength of perturbations: controlled by γ
• Directions of perturbations: row and column spaces of

∑︀
e∈E ω

e(Se − S0 + μeμe⊤)
Comparing to traditional distributionally robust optimization (DRO):
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Comparing to other methods: for γ ≥ 1, we have CoOLS ⊆ CpOLS ⊆ C γ
anchor ⊆ C

γ
DRIG.

• observational OLS: CoOLS =
{︀
v ∈ Rp+1 : E[vv⊤] ⪯

∑︀
e∈E ω

e
(︀
Se − S0 + μeμe⊤

)︀}︀
• pooled OLS: CpOLS =

{︀
v ∈ Rp+1 : E[vv⊤] ⪯

∑︀
e∈E ω

e
(︀
Se − S0 + μeμe⊤

)︀}︀
• anchor regression: C γ

anchor =
{︀
v ∈ Rp+1 : E[vv⊤] ⪯

∑︀
e∈E ω

e
(︀
Se − S0 + γμeμe⊤

)︀}︀
• causal parameter: Ccausal =

{︀
v ∈ Rp+1 : vp+1 ≡ 0

}︀
Causal identification
DRIG solution with γ→∞:

bopt
∞
:= lim

γ→∞
bopt
γ
= rgmin

b satisfies GI
E[(Y0 − b⊤X0)2] .

Identifiable cases: bopt
∞
= b⋆

• Sufficient interventions on X & no interventions on Y or H
• Sufficient interventions on X & independent interventions on Y & Y is childless.
Unidentifiable cases: approximate identifiability ∥bopt

∞
− b⋆∥ ≤ c

• Interventions on the latent variables with dense latent effects
• Insufficient interventions on X

DRIG-A: adaptive DRIG in semi-supervised domain adaptation settings

• DRIG with matrix  for more flexible robustness: bopt


is minimizing

L(b) := E[(Y0−b⊤X0)2]+
∑︁
e∈E

ωe (︀E[γyYe − b⊤xXe]2 − E[γyY0 − b⊤xX0]2
)︀
.

with a closed-form solution

bopt

= [EX0X0⊤ + xΔxx]−1[EX0Y0 + γyxΔxy] .

where Δx =
∑︀

e∈E ω
e[EXeXe⊤ − EX0X0⊤] and Δxy =

∑︀
e∈E ω

e[EXeYe − EX0Y0].
• Test distribution Ptest according to SCM (2)
– a small labeled sample {(Xvi , Y

v
i ) ∼ Ptest, i = 1 . . . , nl}

– a large unlabeled test samples {Xvi ∼ Pxtest, i = 1 . . . , nu}.

• Test OLS b̂tOLS := (
1
nu

∑︀nu
i=1 X

v
i X

v
i
⊤)−1( 1nl

∑︀nl
i=1 X

v
i Y

v
i )

• Choosing  based on the semi-supervised test sample: in population

min
x,γy

E[(Yv − bopt


⊤Xv)2]

s.t. EX0X0⊤ + xΔxx = EXvXv⊤

Theorem. Assume p > 1; Var(XuYu) ≻
(︀
E[XuYu] − E[X0Y0]

)︀⊗2. Then ∃Nu,Nl > 0
such that when nu ≥ Nu and nl ≤ N0, we have E[Ltest(b

opt
̂
)] < E[Ltest(b̂tOLS)],

where the expectation is taken over all test samples.

Simulations
Worst-case MSEs over 20 randomly simulated test environments:
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(a) no intervention on Y or H (b) intervention on Y and H

Single-cell data

• 10 genes (1 response), 11,485 observational data, 10 interventional environments.
• Hundreds of test environments; on each of them, one hidden gene is intervened.
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(a) Quantiles of MSEs on 50 test environments (b) semi-supervised setting
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