Robust and causal-oriented prediction models from heterogeneous data

Introduction

- Heterogeneous data provides opportunities for causal inference and for learning prediction models that generalize to unseen environments.
- Perturbations may affect both means and variances of the variables, while previous methods only exploit shifts in the means.
- We propose Distributionally Robust predictions via Invariant Gradients (DRIG), a method that leverages perturbations in the form of both mean and variance shifts for robust predictions.
- Viewing causality as an extreme case of distributional robustness, we investigate the causal identifiability of DRIG under various scenarios of interventions and causal structures.

Linear structural causal model

Covariates $X \in \mathbb{R}^p$ and response variable $Y \in \mathbb{R}$ with latent variables H.

• Training data from multiple environments $e \in \mathscr{E}$:

$$\begin{pmatrix} X^e \\ Y^e \end{pmatrix} = B^* \begin{pmatrix} X^e \\ Y^e \end{pmatrix} + \varepsilon + \delta^e$$

where $b^* := B^*_{p+1,1;p}$ denotes the causal effects and $\varepsilon \perp \delta^e$.

- Reference environment: $0 \in \mathscr{E}$ such that $\sum_{e \in \mathscr{E}} \omega^e \mathbb{E}[\delta^e \delta^{e^\top}] \succeq \mathbb{E}[\delta^0 \delta^{0^\top}]$. e.g., an observational environment with no intervention, i.e., $\delta^0 \equiv 0$.
- Test distribution under new interventions:

$$\begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix} = B^{\star} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix} + \varepsilon + \nu,$$

Our method DRIG

Given a scalar $\gamma \geq 0$, the population DRIG: $b_{\gamma}^{opt} = \alpha rgmin_b \mathscr{L}_{\gamma}(b)$ where

$$\mathscr{L}_{\gamma}(b) := \mathbb{E}[\ell(X^{0}, Y^{0}; b)] + \gamma \sum_{e \in \mathscr{E}} \omega^{e} (\mathbb{E}[\ell(X^{e}, Y^{e}; b)] - \mathbb{E}[\ell(X^{0}, Y^{e}; b)])$$

where $l(x, y; b) := (y - b^{\top}x)^2$ and γ is a hyperparameter.

- Special cases: interpolation between OLS and the causal parameter: • $\gamma = 0$: observational OLS
- $\gamma = 1$: pooled OLS
- $\gamma \rightarrow \infty$: causal parameter (when identifiable)
- $\delta^{e'}$'s are deterministic: anchor regression with categorical anchors
- In the limit of $\gamma \to \infty$, the DRIG solution b_{α}^{opt} satisfies gradient invariance:

Definition (Gradient invariance)

A regression parameter b is said to satisfy the gradient invariance (GI) condition if $\sum_{e \in \mathscr{E}} \omega^e \nabla_b \mathbb{E}[\ell(X^e, Y^e; b)] = \nabla_b \mathbb{E}[\ell(X^0, Y^0; b)].$

Xinwei Shen[†], Peter Bühlmann[†], and Armeen Taeb[‡]

[†] Seminar for Statistics, ETH Zürich, [‡]Department of Statistics, University of Washington

- Strength of perturbations: controlled by γ
- **Robust optimization**

• Directions of perturbations: row and column spaces of $\sum_{e \in \mathscr{E}} \omega^e (S^e - S^0 + \mu^e \mu^{e^+})$ Comparing to traditional distributionally robust optimization (DRO): daptive DRIG learned from data mplified and reshaped Comparing to other methods: for $\gamma \geq 1$, we have $\mathscr{C}_{OOLS} \subseteq \mathscr{C}_{POLS} \subseteq \mathscr{C}_{POLS}^{\gamma} \subseteq \mathscr{C}_{POLS}^{\gamma}$. • observational OLS: $\mathscr{C}_{OOLS} = \{ v \in \mathbb{R}^{p+1} : \mathbb{E}[vv^{\top}] \leq \sum_{e \in \mathscr{E}} \omega^e (S^e - S^0 + \mu^e \mu^{e^{\top}}) \}$

- pooled OLS: $\mathscr{C}_{\text{pOLS}} = \left\{ v \in \mathbb{R}^{p+1} : \mathbb{E}[vv^{\top}] \preceq \sum_{e \in \mathscr{E}} \omega^e \left(S^e S^0 + \mu^e \mu^{e^{\top}} \right) \right\}$
- anchor regression: $\mathscr{C}_{anchor}^{\gamma} = \left\{ v \in \mathbb{R}^{p+1} : \mathbb{E}[vv^{\top}] \preceq \sum_{e \in \mathscr{E}} \omega^{e} \left(S^{e} S^{0} + \gamma \mu^{e} \mu^{e^{\top}} \right) \right\}$
- causal parameter: $\mathscr{C}_{\text{causal}} = \{ v \in \mathbb{R}^{p+1} : v_{p+1} \equiv 0 \}$

Causal identification

DRIG solution with $\gamma \rightarrow \infty$:

 $b_{\infty}^{\text{opt}} := \lim_{\gamma \to \infty} b_{\gamma}^{\text{opt}} = \underset{b \text{ satisfies GI}}{\operatorname{argmin}} \mathbb{E}[(Y^{0} - b^{\mathsf{T}} X^{0})^{2}].$

Identifiable cases: $b_{\infty}^{\text{opt}} = b^{\star}$

- Sufficient interventions on X & no interventions on Y or H
- Sufficient interventions on X & independent interventions on Y & Y is childless.
- Unidentifiable cases: approximate identifiability $\|b_{\infty}^{\text{opt}} b^{\star}\| \leq c$
- Interventions on the latent variables with dense latent effects
- Insufficient interventions on X

(1)

(2)

 $(Y^{0}; b)]),$ (3)

ts	arbitrarily strong interventions
IG	Causal Dantzig
special case	causality
(mean shifts only)	
egression	
and causality	

(4)

• DRIG with matrix Γ for more flexible robustness: b_{Γ}^{opt} is minimizing

$$\mathscr{L}_{\Gamma}(b) := \mathbb{E}[(Y^{0}-b^{\top}X^{0})^{2}] + \sum_{e \in \mathscr{E}} u$$

with a closed-form solution

$$b_{\Gamma}^{\mathrm{opt}} = [\mathbb{E}X^{0}X^{0^{\top}} +$$

- Test distribution P_{test} according to SCM (2) - a small labeled sample $\{(X_i^v, Y_i^v) \sim P_{\text{test}}, i = 1..., n_l\}$ - a large unlabeled test samples $\{X_i^{V} \sim P_{test}^{X}, i = 1, ..., n_u\}$.
- Test OLS $\hat{b}_{tOLS} := \left(\frac{1}{n_u}\sum_{i=1}^{n_u}X_i^vX_i^{v\top}\right)^{-1}\left(\frac{1}{n_i}\sum_{i=1}^{n_i}X_i^vY_i^v\right)$
- Choosing Γ based on the semi-supervised test sample: in population

$$\begin{array}{c} \min_{\Gamma_{x}, \gamma_{y}} & \mathbb{E}[(\mathbf{x})] \\ \text{s.t.} & \mathbb{E} \mathbf{X}^{\mathbf{0}} \end{array}$$

where the expectation is taken over all test samples.

Simulations

Worst-case MSEs over 20 randomly simulated test environments:

Single-cell data

• 10 genes (1 response), 11,485 observational data, 10 interventional environments. • Hundreds of test environments; on each of them. one hidden gene is intervened.