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Introduction

e Heterogeneous data provides opportunities for causal inference and for learning
prediction models that generalize to unseen environments.

e Perturbations may affect both means and variances of the variables, while previous
methods only exploit shifts in the means.

e \We propose Distributionally Robust predictions via Invariant Gradients (DRIG), a
method that leverages perturbations in the form of both mean and variance shifts
for robust predictions.

e Viewing causality as an extreme case of distributional robustness, we investigate
the causal identifiability of DRIG under various scenarios of interventions and causal
structures.

Linear structural causal model

Covariates X € RP and response variable Y € R with latent variables H.
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¢ Training data from multiple environments e € &:

= B* + £+ &5, (1)
Y€ Y€

denotes the causal effects and € 1l 6°.

where b* 1= B;+1 b
* Reference environment: 0 € & such that }___, wE[%6°T] = E[§%°°']. e.g., an

observational environment with no intervention, i.e., §° = 0.

e Test distribution under new interventions:

= B* +e4v, (2)
YV YV

Our method DRIG

Given a scalar y = 0, the population DRIG: bipt = argmin, %,(b) where

£.(b) :=E[21(X° Y°; b)] + yZ w (E[L(X, Y& b)] —E[2(X%, YO, b)]),  (3)

e€E

where £(x, y; b) := (y — b"x)? and vy is a hyperparameter.

Special cases: interpolation between OLS and the causal parameter:
e ¥ = O: observational OLS

e vy = 1: pooled OLS

e ¥ — 00: causal parameter (when identifiable)

e 6°’s are deterministic: anchor regression with categorical anchors

In the limit of y — ©0, the DRIG solution bipt satisfies gradient invariance:

Definition (Gradient invariance)

A regression parameter b is said to satisfy the gradient invariance (Gl) condition if
> _ccs WVLE[L(X, Y& b)] = VLE[£(X°, Y°; b)].
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Figure: Trade-off between prediction and causality

Distributional robustness

Minimizing the worst-case risk over test perturbations v € € C RPt! j.e.

argminsupE,[£(X", Y"; b)]. (4)
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Theorem (Robustness guarantee)

The prediction model by DRIG is the solution to the worst-case risk (4) with
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where S¢ := cov(6¢) and u¢ := E[ §¢]

e Strength of perturbations: controlled by y
e Directions of perturbations: row and column spaces of Y, w®(S¢ — S° + ueue')

Comparing to traditional distributionally robust optimization (DRO):

Robust optimization DRIG Adaptive DRIG
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and radius perturbations reshaped
' . > C C 6 CE’ .
Comparing to other methods: for y = 1, we have 6,015 € 6,015 € ‘ﬁamhm C ‘KDRIG

o observational OLS: €015 = {vERPH : E[wT] XY oo w® (56— S0+ peue')}
o pooled OLS: G015 = {vERPH I E[w'] XY pw®(S¢—S°+ peuc')}

= {veR" I E[WT] XY cpw (55— S+ yupT) }
e causal parameter: 6., = {v € RPt!: Vpt1 = O}

e anchorregression: €Y

anchor

Causal identification

DRIG solution with y — ©0:

b = lim b = argmin E[ (Y° — b"X%)?].
° y—© Y b satisfies Gl

Identifiable cases: b?" = b*

e Sufficient interventions on X & no interventions on Y or H

e Sufficient interventions on X & independent interventions on Y & Y is childless.
Unidentifiable cases: approximate identifiability |[b?"' — b*|| < c

e Interventions on the latent variables with dense latent effects

e Insufficient interventions on X

DRIG-A: adaptive DRIG in semi-supervised domain adaptation settings

e DRIG with matrix " for more flexible robustness: bl‘lpt IS minimizing

%r(b) :=E[(Y°—b"X%)?] +Z W (E[y,Ye—b' TX1*—E[v,Y°—b',X°1?).
eesd
with a closed-form solution

b = [EXOX®" + MWl ] T EXOYC + v, My 1.

where Ay =Y 0 [ EXXeT —EXOX° ] and Ay, = Y. w°[ EXeYe — EXOY©].
e Test distribution P;.; according to SCM (2)

- a small labeled sample {(X’Y, Y’Y) ~ Piost, i=1...,0n}
- a large unlabeled test samples {X’Y ~ P%‘est, i=1...,ny}.

e Test OLS byors 1= (- 21 X'X*T)~'(C X7 X*Y)

=1 1 1 =1 1 1
e Choosing [ based on the semi-supervised test sample: in population

min  E[(Y’'— b ' X")?]
vy I

st EXOXC' + MA M, = EX'X'T

Theorem. Assume p > 1; Var(X“v¥) > (E[X“Y4] — E[ X°Y°] )®2. Then ANy, N; > O
such that when n, > N, and n; < No, we have E[%test(b%p Y < E[ Lowsi(bio15)],
where the expectation is taken over all test samples.

Simulations

Worst-case MSEs over 20 randomly simulated test environments:
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Single-cell data

¢ 10 genes (1 response), 11,485 observational data, 10 interventional environments.

e Hundreds of test environments; on each of them. one hidden gene is intervened.
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(a) Quantiles of MSEs on 50 test environments (b) semi-supervised setting
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