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Abstract.

We congratulate the authors Bertsimas, Pauphilet and van Parys

(hereafter BPvP) and Hastie, Tibshirani and Tibshirani (hereafter HTT) for
providing fresh and insightful views on the problem of variable selection
and prediction in linear models. Their contributions at the fundamental level
provide guidance for more complex models and procedures.

Key words and phrases:

Distributional robustness, high-dimensional esti-

mation, latent variables, low-rank estimation, variable selection.

1. A BIT OF HISTORY ON SUBSET SELECTION

£o regularization in linear and other models has taken
a prominent role, perhaps because of Occam’s razor prin-
ciple of simplicity. Information criteria like AIC (Akaike,
1973) and BIC (Schwarz, 1978) have been a breakthrough
for complexity regularization with £( regularization, see
also Kotz and Johnson (1992). Miller’s book on subset
selection (Miller, 1990) provided a comprehensive view
of the state-of-the-art 30 years ago. But the landscape has
changed since then.

Breiman introduced the nonnegative garrote for better
subset selection (Breiman, 1995), mentioned instability
of forward selection (Breiman, 1996b) and promoted bag-
ging (Breiman, 1996a) as a way to address it. A bit ear-
lier, Basis pursuit has been invented by Chen and Donoho
(1994), just before Tibshirani (1996) proposed the famous
Lasso with £; norm regularization that has seen mas-
sive use in statistics and machine learning; see also Chen,
Donoho and Saunders (2001) and Fuchs (2004). The view
and fact that £ norm regularization can be seen as a pow-
erful convex relaxation (Donoho, 2006) for the £( prob-
lem has perhaps overshadowed that there are other statis-
tical aspects in favor of £; norm regularization, as pointed
out now again by HTT in their current paper.
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The scientific debate on whether to use £( or £1 regular-
ization to induce sparsity has always been active. One way
to tackle the computational shortcoming of the exact £y
approach is through greedy algorithms. Tropp (2004) jus-
tified the good old greedy forward selection from a theo-
retical view point with no noise and Cai and Wang (2011)
generalize this result to noisy situations, both assuming
fairly restrictive coherence conditions on the design; the
conditions in the latter work for noisy problems are weak-
ened in Zhang (2011). Also matching pursuit (Mallat and
Zhang, 1993) has been a contribution in favor of an al-
gorithmic forward approach, perhaps mostly for compu-
tational reasons at that time. The similarity of matching
pursuit to £; norm penalization was made more clear by
Least Angle regression (Efron et al., 2004) and L boost-
ing (Biihlmann, 2006). It is worth mentioning the recent
work by Bertsimas, King and Mazumder (2016) illus-
trates that solving moderate-size exact £p problem is no
longer as slow as people used to think. Apart from their
smart implementations, the speed-up they are able to at-
tain benefits from tremendous progress in modern opti-
mization theory and in physical computing powers.

On choosing between the £y and the £; approach, both
BPvP and HTT have provided valuable statistical and op-
timization comparisons and discussions. To consolidate
the contributions in both papers in a principled manner,
here we outline what we believe are the three aspects that
a data analyst must consider when deciding between £
and ¢; regularization: namely the application for which
they will be employed, the optimization guarantees (com-
putation speed and certificates of optimality) that are de-
sired, and the statistical properties that the model might
possess.
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2. THREE ASPECTS OF THE PROBLEM
2.1 Application Aspect

Without a concrete data problem, the application aspect
is perhaps not clearly distinguishable from a statistical
data analysis viewpoint. Whether one would prefer £( or
£1 norm regularization is problem dependent. For exam-
ple, for problems where the cardinality of model param-
eters is naturally constrained, a truly sparse approxima-
tion is reasonable and one may prefer £y regularization.
While £¢¢ regularization is more natural from a modeling
perspective, data analysts have often resorted to £ regu-
larization as a convex surrogate to speed up computations.
However, the £| surrogate can become problematic if the
solution of the £; problem were interpreted as that of the
exact £o problem. In particular, it is well known that ¢;
tends to overshrink the fitted estimates (Zou, 2006). That
is, the £1 estimates are overly biased toward zero. This
phenomenon can lead to poorly fitted models in prac-
tice. For example, £; procedures for deconvolving cal-
cium imaging data to determine the location of neuron
activity lead to incorrect estimates (Friedrich, Zhou and
Paninski, 2017), which has motivated exact solvers for
the £p-penalized problem in this context (Jewell and Wit-
ten, 2018). In directed acyclic graph (DAG) estimation,
£y regularization is clearly preferred over ¢; regulariza-
tion. In particular, £y regularization preserves the impor-
tant property that Markov-equivalent DAGs have the same
penalized likelihood score, while this is not the case for £
regularization (van de Geer and Biihlmann, 2013).

The two examples above illustrate that many additional
desiderata—other than computational complexity—may
arise when deciding between £( and £ regularization. De-
pending on the application, a practitioner may consider:
certificates of optimality (e.g., in mission critical appli-
cations), statistical prediction guarantees, feature selec-
tion guarantees, stability of the estimated model, distribu-
tional robustness and generalization of the theoretical un-
derstandings in linear models to more complex models.
Our main objective in this discussion is to raise aware-
ness of the above considerations when choosing between
£o and ¢ regularization.

2.2 Optimization Aspect

Exact £y regularization has long been abandoned be-
cause of the computational hardness. One could opti-
mize using branch-and-bound techniques for moderate
dimensions (Gatu and Kontoghiorghes, 2006, Hofmann,
Gatu and Kontoghiorghes, 2007, Bertsimas and Shioda,
2009) or, as most statisticians did, resort to some forward—
backward heuristics. These approaches either provide no
guarantee for finding the optimal solution or are not com-
putationally tractable for large-scale problems. On the

other hand, ¢; regularization is convex. When ¢; reg-
ularization is combined with a convex loss, the opti-
mization program can be solved efficiently using stan-
dard subgradient-based methods. Gradient methods are
ubiquitous and ready-to-use in today’s deep learning re-
search and popular computing packages such as Tensor-
flow (Abadi et al., 2015) or PyTorch (Paszke et al., 2019).
These publicly available computing packages make £
regularization easily deployable in applications beyond
linear models.

Of course, finding the global optimum may not be nec-
essary for good statistical performance. The search for
greedy algorithms for g regularization and the study of
the corresponding statistical performance has been and
still is an active research field (see Tropp, 2004, Cai and
Wang, 2011 and Zhang, 2011 mentioned in Section 1).
However, in order to provide both computational and
statistical guarantees for these greedy algorithms, often
fairly restrictive coherence conditions on the design ma-
trix have to be assumed.

The computational difficulty of exact £ regularization
is not completely insurmountable. As pointed by the re-
cent work of Bertsimas, King and Mazumder (2016), with
the advance in physical computing powers and in the
modern optimization theory on mixed-integer program-
ming (MIO), data analysts now have a rigorous approach
to employ £ regularization efficiently in regression prob-
lems that would have taken years to compute decades ago.
However, as pointed out by BPvP and HTT, the mixed-
integer programming formulation of the £y problem is the
not yet as fast as Lasso, especially for low-SNR regimes
and large problem sizes. In such scenarios, one often has
to trade off between getting closer to the global minimum
and terminating the program early under a time limit. As
an example, HTT points out for problem size n = 500,
p = 100, the method originally introduced in Bertsimas,
King and Mazumder (2016) still requires an hour to cer-
tify optimality. The addition of ¢, regularization by BPvP
does improve computations in the low-SNR regime, in
particular with their new convex relaxation SS for the
Lo+ £, framework. As a convex relaxation, SS is a heuris-
tic solution and is able to solve sparse linear regression
of problem size n = 10,000, p = 100,000 in less than 20
seconds, putting it on par with Lasso. Overall, the contri-
bution of Berstimas and coauthors in the series of related
papers Bertsimas, King and Mazumder (2016), Bertsimas
and King (2017), Bertsimas and Van Parys (2020) enables
the possibility of ¢ regularization in high-dimensional
data analysis, and inspires future research to further in-
tegrate £o-based procedures.

2.3 Statistical Aspect

The statistical aspect is rooted in the goal to do accu-
rate or “optimal” information extraction in the context of
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uncertainty and aiming for stability and replicability. This
inferential aspect may have very different aims, and de-
pending on them and on the data generating processes,
different methods might be preferred for different scenar-
ios. Even more so, the statistical aspect might even em-
brace the idea that there are several “competing” methods
and one would typically gain information by inspecting
consensus or using aggregation.

Both BPvP and HTT papers demonstrate a careful and
responsible comparison of subset selection methods, and
we complement with a few additional empirical results in
Section 3. With respect to statistical performance, HTT
point out some key takeaways from their extensive em-
pirical study: there is no clear winner, and depending on
the size of the SNR, different methods perform favorably.
In particular, they suggest that £yp-based best subset suf-
fers both computationally and statistically in the low-SNR
regime. To address some of the instability concerns raised
by HTT and inspired by the Elastic Net Zou and Hastie
(2005), BPvP include an ¢, penalty to their MIO formu-
lation. With this new estimator, they demonstrate good
performance across the SNR spectrum. We applaud both
BPvP and HTT put the No Cherry Picking (NCP) guide-
lines (Biihimann and van de Geer, 2018) in action.

2.3.1 Relaxed and adaptive Lasso: A compromise be-
tween Lo- and £ regularization. HTT find as an over-
all recommendation that the relaxed Lasso (Meinshausen,
2007), or a version of it, performs “overall best.” In fact,
when Nicolai Meinshausen came up independently with
the idea around 2005, we learned that Hui Zou has in-
vented the adaptive Lasso (Zou, 2006). Both proposals
aim to reduce the bias of Lasso and push the solution more
towards £ penalization. So we wonder why HTT did not
include the adaptive Lasso into their study as well (by us-
ing the plain Lasso as initial estimator, see also Biihlmann
and van de Geer, 2011, Chapter 2.8). We would expect a
similar behavior as for the relaxed Lasso.

The relaxed Lasso and adaptive Lasso above are “push-
ing” the convex ¢; regularization towards the nonconvex
£o to benefit from the both regularization. In the same
spirit, the €9 + ¢» approach from BPvP combines the
£y regularization with the convex ¢, regularization to in-
crease stability in low SNR regime. If one is willing to
accept the conceptual connection between the £g + £ ap-
proach from BPVP and the relaxed Lasso, it is no longer
surprising to see that the £y + ¢, approach from BPvP
performs better than best subset and Lasso from HTT in
many simulation settings.

2.3.2 Statistical theory. The beauty of statistical the-
ory is to characterize mathematically under which as-
sumptions a certain method exhibits performance guar-
antees such as minimax optimality, rate of statistical con-
vergence, and consistency. Such guarantees are typically

provided for prediction performance or feature selection
performance of a procedure.

Regarding the £y and ¢; regularization in high-dimen-
sional sparse linear models, some statistical guarantees
are known and some are still unknown (at least to us).
For prediction, that is, estimating the regression surface
X B — £ regularization is very powerful as it leads to min-
imax optimality under no assumption on the design ma-
trix X (Barron, Birgé and Massart, 1999). For the Lasso,
this is not true and the fast convergence rate requires
conditions on the design such as the restricted eigen-
value condition (Bickel, Ritov and Tsybakov, 2009) or
the compatibility condition (van de Geer and Biihmann,
2009, Biihlmann and van de Geer, 2011, Bellec, 2018).
On the other hand, for feature selection accuracy, that is,
estimation of the parameter vector 8*—one necessarily
needs a condition on the fixed design matrix X, since
B* is not identifiable in general if p > n. Specifically,
since the least squares loss function is the quadratic form
|Y — Xbl5/n~ (B*—b)T XT X/n(B* — b) + o} with B*
denoting the true regression parameter and %2 the error
variance, we might necessarily need a restrictive eigen-
value/compatibility type condition to estimate S* (these
are in fact the weakest assumptions known for accurate
parameter estimation or feature selection consistency with
the Lasso). Whether £p minimization has an advantage
over the Lasso for parameter estimation (e.g., requiring
weaker assumptions or yielding more accurate estimators)
is unclear to us, and we believe investigating such rela-
tionships is an interesting direction for future research. On
the fine scale, methods which improve upon the bias of
the Lasso as the adaptive Lasso (Zou, 2006), the relaxed
Lasso (Meinshausen, 2007) or thresholding after Lasso,
are indeed a bit better than the plain Lasso, under some
assumptions (van de Geer, Bilhlmann and Zhou, 2011).
We wonder whether these Lasso variants also have simi-
lar advantages when introduced with £( regularization.

3. AFEW ADDITIONAL THOUGHTS

BPvP and HTT provide many empirical illustrations
on prediction, parameter estimation, cross-validation or
degrees of freedom. We complement this with empiri-
cal studies on the following points: (i) distributional ro-
bustness and (ii) feature selection stability. The first point
(1) is very briefly mentioned by BPvP in Sections 2.1.1
and 2.3.1 but not further considered in their empirical
results. Further, we highlight a few problem settings—
with more complicated decision spaces than linear sub-
set selection—where developing optimization tools for £¢
regularization may be fruitful.

Implementation details. In all our experiments, Lasso
is solved via the R package glmnet (Friedman, Hastie and
Tibshirani, 2010) and best subset is solved via the R pack-
age bestsubset, with maximum computing time limit of
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30 minutes following HTT. The convex relaxation of the
Lo + £, approach SS (introduced by BPVP) is solved via
the Julia package SubsetSelection, with maximum com-
puting iteration limit of 200 iterations following BPvP.
While CIO is also an important method in BPvP, we did
not include it here because we had a hard time executing
the CIO code by BPvP. The difficulty is due to the version
incompatibilities of installing both SS and CIO under the
same Julia version in the current SparseRegression pack-
age provided by BPvP. We would like to encourage the
authors to update the SparseRegression package to make
their software contributions more accessible.

The code to generate all the figures here are written in
R with the integration of Julia code via R package Julia-
Call. Our code is released publicly in the Github reposi-
tory STSDiscussion_SparseRegression.!

3.1 Distributional Robustness

It is well known that the Lasso has a robustness prop-
erty with respect to “measurement error” as the robust op-
timization problem (Xu, Caramanis and Mannor, 2009):

(3.1) argmin max |[Y — (X 4+ A)b|,
b AEU(L)

with the perturbation set U(A) = {A = (§1,...,8)),
181l <A Vj}is equivalent to the square root Lasso

argmin ||Y — Xb|l2 + A||b]|1.
b

We note that the square root Lasso and the Lasso have the
same solution path when varying A from O to co. Thus,
the Lasso is robust under small covariate perturbations;
“small” since the optimal choice of A to guarantee the
optimal statistical risk in the Lasso is typically of order
Viog(p)/n.

More generally, Bertsimas and Copenhaver (2018)
demonstrate that the robust optimization problem (3.1)
with a norm /() and a perturbation set U(A) = {A :
maxpeRp ”f(l;gz < A}isequivalent to argmin | Y — Xb|» +
Ah(b), matching the previous result of Xu, Caramanis and
Mannor (2009) in the £; norm regularized regression set-
ting. These results suggest a duality between norm-based
regularization and robustness. However, as £y is not a
norm, the connection with robustness is not immediately
transparent. We believe that theoretically characterizing
the type of perturbations that the £o regularization is ro-
bust to would be an interesting and important future re-
search direction.

Due to the lack of theoretical comparisons between the
distributional robustness of the ¢y and £ regularization,
in the following, we investigate the distributional robust-
ness of these two regularization techniques empirically.

1 https://github.com/yuachen/STSDiscussion_SparseRegression

We evaluate the distributional robustness with the follow-
ing DR metric which takes a regression parameter or its
estimate as input and outputs its distributional robustness:

(3.2) DR: B+ max |[Y — (X + A)B
Ael(n)

29

with (X, Y) generated independently identically dis-
tributed with respect to the training data that yielded the
estimate for 8. DR computes the “worst-case” predic-
tion performance of 8 when the covariates X have been
perturbed inside the set {/(n). Here, we take the per-
turbation set U(n) = {A = (81,...,68p), 1612 < n Vj},
parametrized by the perturbation magnitude 7 > 0. To ob-
tain a better understanding of DR, it helps to consider the
distributional robustness difference (DRD)

(3.3)
DRD: g > max [[Y — (X + A)B[, = Y — XBll2.
Ael(n)

The metrics DR and DRD are related trivially by the rela-
tion DR(B8) = DRD(8) + ||Y — XB]||2, for a fixed 8. Fur-
ther, due to the ¢; norm and robustness duality obtained
in Xu, Caramanis and Mannor (2009), DRD(8) = n||8]/1-
As a consequence, the DRD definition is independent of
how the data (X, Y) is generated. We also deduce that
DR(B) =nl|Bll1 + IY — XB]l2. In other words, the dis-
tributional robustness of an estimator 8 (as measured by
DR(p)) trade-offs between the £1 norm of its solution and
the prediction performance on unperturbed data.

3.1.1 Empirical illustration: DRD vs regularization pa-
rameter. We empirically explore distributional robustness
difference, DRD, as a function of the regularization pa-
rameter for both the Lasso and best subset (i.e., the £y
regularization solver originally developed in Bertsimas,
King and Mazumder, 2016).

In this simulation, we consider the stylized setting
where n = 100, p =30, s =5, SNR = 2.0, and the de-
sign matrix is sampled from a Gaussian distribution with
identity covariance (i.e., correlation p = 0). We further
fix the perturbation magnitude n = 1.0. Figure 1 shows
DRD of the Lasso and best subset estimates as a function
of the regularization parameter A for the Lasso and as a
function of the number of features selected k for best sub-
set. Due to the equality DRD(8) = || 8]|1, the behavior
of DRD mimics the £; norm of the estimates in the reg-
ularization solution path. As expected, choosing larger A
leads to smaller DRD for the Lasso; we observe a similar
behavior with best subset for smaller k.

For both problems, we label two choices for the regular-
ization parameters: 1. the choice that leads to the best pre-
diction performance on a separate validation set of size n;
2. the choice that leads to the best prediction performance
on the same validation set among all regularization values
that yield support size less than or equal to s = 5. Choice
1 prioritizes the test prediction performance, while Choice
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as a function of the regularization parameter k.

2 prioritizes selecting the correct number of features. The
left plot of Figure 1 shows that for the Lasso, the two
choices lead to very different values for A, and as a re-
sult, different DRD. Theoretically, the Lasso can be used
to achieve good prediction performance and good feature
selection performance, but the choice of XA for each goal is
different (Wainwright, 2009, Zhao and Yu, 2006). In par-
ticular, optimizing with respect to prediction performance
requires a smaller value of A (Choice 1) and optimizing
for model selection accuracy requires a larger values of A
(Choice 2). The right plot of Figure 1 shows that the two
choices for best subset are similar. Comparing the left and
right plots in Figure 1, we observe that Choice 1 yields ap-
proximately the same DRD for the Lasso and best subset.
Choice 2, however, chooses a large A for the Lasso, lead-
ing to a slightly better DRD for the Lasso than for best
subset.

3.1.2 Empirical illustration: Robustness versus signal-
to-noise ratio and ambient dimension. In this experiment,
we explore the distributional robustness of the Lasso, best
subset, as well as the new method SS developed by BPvP.

Following the simulation settings in HTT, we consider
the following four data generation settings:

1. n=100, p=30,5s=5,SNR=2.0,0=0
2. n=100, p=30,5s=5,SNR=0.1, p=0
3. n=50, p=1000, s =5, SNR=20.0, p =0
4. n=50, p=1000,s =5,SNR=1.0, p =0,

and the design matrix is sampled from a Gaussian distri-
bution with identity covariance (i.e., correlation p = 0).
For the Lasso and best subset, we select their regular-
ization parameters based on prediction performance on a
separate validation set of size n. Since SS has two hy-
perparamter choices, we fix the £, penalty regularization
(denoted as 1/y by BPvP) to take one of the two values
y = {1000, 0.01} and tune the £( regularization parameter
based on validation performance. The two levels of the £,
penalty lead to two versions of SS: SS; (y = 1000) with
small ¢> penalty and SS, with large £, penalty (y = 0.01).

N
o
o

N
3

11 norm of beta
o
o

25

DRD

‘minvalerror "\ T T

0.0
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Left—Distributional robustness difference (DRD) of the Lasso as a function of the regularization parameter A, right—DRD of best subset

For each methods, after appropriately selecting the reg-
ularization parameters and computing the corresponding
estimates, we evaluate the metric DR in equation (3.2) as
a function of the perturbation magnitude . Figure 2 com-
pares the performance of the four methods. Given the re-
lation DR(B) = n||Bll + IIY — XB||2, the Y-intercept of the
linear curves in Figure 2 represent the prediction perfor-
mance with unperturbed data, and the slopes are precisely
the 1 norm of the S.

Focusing on the high-SNR regimes in the left column of
Figure 2, the Lasso, best subset and SS; have comparable
distributional robustness for small amounts of perturba-
tion in both low and high dimensions. As a comparison,
SS» has larger prediction error with unperturbed data but
has better distributional robustness (as measured by DR)
if the perturbations are large enough; this behavior can be
attributed to the large ¢ penalty in SS».

Focusing on the low-SNR regimes in the right column
of Figure 2, in low dimensional setting 2, the Lasso is
more robust than best subset. The robustness of the Lasso
is largely due to the £; shrinkage property provided by
£ regularization. In the low-SNR and high dimensional
setting 4, best subset turns out to be more robust than the
the Lasso. We observe that in the low-SNR and high di-
mensional setting, best subset selects very small number
of features, enhancing its robustness. Once again, we ob-
serve that SS, yields substantially more robust solutions
as compared to the other three methods.

Our experiments, as well as the empirical studies by
BPvVP, suggest that £y + £> minimization can substantially
improve robustness. It is worth noting that this comes
at the cost of choosing an additional regularization pa-
rameter. In practice, searching over the two-dimensional
grid of regularization parameters could make SS less pre-
ferred choice for computational reasons. Nonetheless, the
promising results of SS raise interesting questions about
its statistical properties, as well its optimization guaran-
tees. On the statistical side, it is interesting for future re-
search to understand theoretically when the nonconvex
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the data matrix is uncorrelated, that is, p = 0.

Lo + £5 regularization has similar prediction, model se-
lection or robustness guarantees as the Lasso. On the op-
timization side, since SS only solves a relaxation of the
Lo + £, regularization optimization problem, it is inter-
esting to understand when the SS solution is close to the
global optimum.

3.2 Sampling Stability for Feature Selection

Next, we empirically study the stability of best subset
and Lasso as feature selection methods. We measure the
feature selection stability by the probability of true and
null variables being selected across multiple independent
identically generated datasets. Ideally, we would like the
probability of selecting any true variable to be close to one
and any null variable close to zero. As with distributional
robustness, the feature selection stability of the Lasso and
best subset are strongly dependent on the choice of regu-
larization parameter. We illustrate this phenomena in the
supplementary material Section A.1 (see Chen, Taeb and
Biihlmann, 2020).

We consider the following stylized setting:

1. n=100, p=30,5s =5,SNR=2.0, p =0.35
2. n=100, p=30,5s =5,SNR=0.1, p =0.35

Figure 3 shows the feature stability of Lasso and best sub-
set where the regularization parameters are chosen based
on prediction on a validation set. In the high-SNR regime,

the feature selection stability of the £( approach is better
than that of the Lasso. This is perhaps not very surprising
as it is known that using validation error to select the reg-
ularization parameter for the Lasso yields overly complex
models (Wainwright, 2009) (we consider in supplemen-
tary material Section A.2 of Chen, Taeb and Biihlmann,
2020 the setting where A for the Lasso is chosen so that
the solution has s nonzeros). In the low-SNR regime (al-
beit still a bit larger than the extreme SNR = 0.05 consid-
ered by HTT), we see both methods struggle to tease away
true variable from null although we would argue that the
Lasso performs favorably here as the true variables appear
with much larger probability.

3.3 More Complicated Decision Spaces

Much of the focus of BPvP and HTT has been on subset
selection for linear sparse regression settings. Although
BPvP consider logistic regression and hinge loss in their
mixed integer framework as well, the theoretical and com-
putational aspects of these approaches appear less under-
stood as compared to the linear setting. In practice, ¢
norm regularization has been widely used beyond the lin-
ear setting for generalized linear models, survival models
but also for scenarios with nonconvex loss functions such
as mixture regression or mixed effect models (cf. Hastie,
Tibshirani and Friedman, 2009, Biihlmann and van de
Geer, 2011, Hastie, Tibshirani and Wainwright, 2015).
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As such, we believe that deepening our understanding
of £p-optimization for problems involving nonquadratic
loss functions (beyond generalized linear models) is an
important direction for future research. Furthermore, we
next outline a few problem instances where £(-based ap-
proaches may provide a fresh and interesting perspective.

3.3.1 Plug-in to squared error loss. There are exten-
sions of linear models in a plug-in sense, as indicated
below, which can deal with important issues around hid-
den confounding, causality and distributional robustness
in the presence of large perturbations.

The trick with such plug-in methodology is as follows.
We linearly transform the datato X = FX and ¥ = FY
for a carefully chosen n x n matrix F. Subsequently, we
fit a linear model of ¥ versus X, typically with a regular-
ization term such as £; norm or now, due to recent con-
tributions by BPvP, we can also use £ regularization. We
list here two choices of F':

1. F is a spectral transform which trims the singu-
lar values of X. If there is unobserved hidden linear
confounding which is dense affecting many components
of X, then the regularized regression of Y versus X
yields the deconfounded regression coefficient. (Cevid,
Biihlmann and Meinshausen, 2018).

2. F is a linear transformation involving projection
matrices and a robustness tuning parameter. Then Anchor
regression is simply regression of ¥ versus X, and we
may want to use £g or £1 regularization (Rothenhiusler
et al., 2018). The obtained regression coefficient has a
causal interpretation and leads to distributional robustness
under a class of large perturbations.

3.3.2 Fitting directed acyclic graphs. Fitting Gaussian
structural equation models with acyclic directed graph
(DAG) structure from observational data is a well-studied
topic in structure learning. As mentioned in Section 2.1,
one should always prefer the £( regularization principle
as it respects the Markov equivalence property. The op-
timization of the {p-regularized log-likelihood function

gmo-

ey Methods
§75- BS

E I Lasso
c 50 | .

g< 1.

s

g ”I“..I.llll el 1 | Illllll‘l
g 5. ML D O R R
a 0 10 20 30

feature index

(b) SNR = 0.1

Feature stability of the Lasso and best subset across 100 independent datasets with problem parameters n =100, p =30,s =5, p =0.35
{2, 0.1}. The regularization parameters are chosen based on prediction performance on a validation set.

with a DAG constraint is very difficult, since the DAG
constraint induces a high degree of non-convexity. The
famous proposal of greedy equivalent search (GES) is
the most used heuristics, but with proven crude consis-
tency guarantees in low dimensions (Chickering, 2003). It
would be wonderful to have more rigorous optimization
tools, which could address this highly nonconvex prob-
lem.

3.3.3 Extensions to low-rank matrix estimation. A
common task in data analysis is to obtain a low-rank
model from observed data. These problems often aim at
solving the optimization problem:

(3.4 argmin f(X)

XeRmxpr

s.t. rank(X) <k,

for some differentiable function f : R"*” — R and k <
min{n, p}. The constraint rank(X) < k can be viewed
as |[singular-values(X)ll¢, < k, making equation
(3.4) a matrix analog of the subset selection problem ana-
lyzed in BPvP and HTT. Due to computational intractabil-
ity of rank minimization, a large body of work has re-
sorted to convex relaxation in order to obtain computa-
tionally feasible solution by replacing the rank constraint
rank(X) with the nuclear norm penalty || X ||, in the ob-
jective (Fazel, 2002), yielding a semidefinite program for
certain function classes f. Such relaxations, while hav-
ing the advantage of convexity, are not scalable to large
problem instances. As such, practitioners often resort to
solving other nonconvex formulations of equation (3.4)
such as the Burer—Monteiro approach (Burer and Mon-
teiro, 2003) and projected gradient descent on the low-
rank manifold (Jain, Tewari and Kar, 2014). For a range
of problem settings, these nonconvex techniques achieve
appealing estimation accuracy (see Chen and Chen, 2018
for a summary), and are able to solve larger-dimensional
problems than approaches based on convex relaxation.
While these nonconvex approaches are commonly em-
ployed, they do not certify optimality. As such, nonlinear
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semi-definite optimization techniques have been devel-
oped to produce more accurate solutions for some special-
izations of equation (3.4); see, for example, (Bertsimas,
Copenhaver and Mazumder, 2017) in the context of rank-
constrained factor analysis. Beyond the setting analyzed
in (Bertsimas, Copenhaver and Mazumder, 2017), we
wonder whether there are conceptual advancements to
the mixed integer framework proposed in BPvP to handle
low-rank optimization problems (3.4) involving continu-
ous nonconvex optimization. Developing this connection
may enable a fresh and powerful approach to provide—in
a computationally efficiently manner—certifiably optimal
solutions to equation (3.4).

4. CONCLUSIONS

It is great that practitioners can begin to integrate fast
and exact £o-based solvers in their data analysis pipelines.
The methods developed by BPVP can benefit many data
analysts who would prefer to focus on the application
aspect of the problem rather than the optimization as-
pect. Aiming for the most parsimonious model fit is a
very plausible principle which is easy to communicate in
many applications. But this alone does not rule out the at-
tractiveness of £1 norm regularization and its versions: it
builds in additional estimation shrinkage, which may be
desirable in high noise settings, and sticking to convex-
ity is yet another plausible principle. In this discussion,
we tried to add a few additional thoughts to the excellent
and insightful papers by BPvP and HTT, in the hope of
encouraging new research in this direction.
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SUPPLEMENTARY MATERIAL

Supplement to “A Look at Robustness and Stability
of ¢1- versus {p-Regularization: Discussion of Papers
by Bertsimas et al. and Hastie et al.” (DOI: 10.1214/20-
STS809SUPP; .pdf). The supplement contains an empiri-
cal analysis of the dependence of feature selection stabil-
ity on the choice of regularization parameter for the Lasso
and best subset. Further, in the context of feature selection
stability, the effect of choosing A for the Lasso to obtain a
fixed cardinality is explored.
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