Model selection over partially ordered sets

Armeen Taeb*, Peter Bühlmann ${ }^{\circ}$, Venkat Chandrasekaran ${ }^{\dagger}$

Department of Statistics, University of Washington *; Seminar for Statistics, ETH Zürich ${ }^{\circ}$; Departments of Computing and Mathematical Sciences and of Electrical Engineering, Caltech ${ }^{\dagger}$

Motivation

Model selection with Boolean-logical structure:

- formulate and test hypothesises, e.g. is this variable present?
- easy to define model complexity and false positives

What about for problems that lack Boolean-logical structure?

- ranking: global structure of transitivity
- clustering: global structure of set-partitions
- causal inference: global structure of acyclicity
- continuous problems, e.g. blind-source separation

Shortcomings of the standard perspective
Example I: clustering
true clusters $=\{a, b\},\{c\} \quad$ estimated clusters $=\{a, b, c\}$ Boolean-logical perspective: $\mathrm{FD}=2$

Example II: causal structure learning

(a) true CPDAG

(b) estimated CPDAG

Boolean-logical perspective: $\mathrm{FD}=4$
Model organization via posets
Models organized according to a poset \mathcal{L} with relations \preceq : Attribute Meaning $\preceq \quad$ containment between simpler \& more complex models least element the "null" model representing no discoveries $\operatorname{rank}(\cdot)$ measures complexity of a model

False discovery framework
Similarity valuation: A symmetric function $\rho: \mathcal{L} \times \mathcal{L} \rightarrow \mathbb{R}$ with:
$\bullet 0 \leq \rho(x, y) \leq \min \{\operatorname{rank}(x), \operatorname{rank}(y)\}$ for all $x, y \in \mathcal{L}$,

- $\rho(x, y) \leq \rho(z, y)$ for all $x \preceq z$,
- $\rho(x, y)=\operatorname{rank}(x)$ if and only if $x \preceq y$.

Definitions

Letting $x^{\star} \in \mathcal{L}$ be a true model and $\hat{x} \in \mathcal{L}$ be an estimate.

$$
\begin{aligned}
& \mathrm{TD}\left(\hat{x}, x^{\star}\right) \triangleq \rho\left(\hat{x}, x^{\star}\right), \\
& \mathrm{FD}\left(\hat{x}, x^{\star}\right) \triangleq \operatorname{rank}(\hat{x})-\rho\left(\hat{x}, x^{\star}\right)=\operatorname{rank}(\hat{x})-\mathrm{TD}\left(\hat{x}, x^{\star}\right), \\
& \mathrm{FDP}\left(\hat{x}, x^{\star}\right) \triangleq \frac{\operatorname{rank}(\hat{x})-\rho\left(\hat{x}, x^{\star}\right)}{\operatorname{rank}(\hat{x})}=\frac{\operatorname{FD}\left(\hat{x}, x^{\star}\right)}{\operatorname{rank}(\hat{x})}
\end{aligned}
$$

Goal: maximize rank subject to false discovery control

Suitable similarity valuation: $\quad \rho_{\text {meet }}\left(\hat{x}, x^{\star}\right) \triangleq \max _{z \preceq \hat{x}, z \preceq x^{\star}} \operatorname{rank}(z)$

- FD in clustering:

\# groups in the coarsest common refinement minus \# groups in \hat{x} Example I: common refinement $=\{a, b\},\{c\} \Rightarrow \mathrm{FD}\left(\hat{x}, x^{\star}\right)=1$

- FD in causal:
\# edges in \hat{x} minus \#edges in a densest CPDAG
that contains conditional dependencies encoded in both \hat{x}, x^{\star}

Example II: densest $=$

Other appropriate similarity valuations in e.g. total ranking, subspace selection and blind source separation

Greedy approaches to model selection

Starting from least model, greedily grow model complexity
Key ingredients:

- data-driven function Ψ : measures statistical significance for moving between neighboring models
- minimal set of neighboring models \mathcal{S} : accounting for invariances

Theorem: $\Psi_{\text {stable }}$: based on subsampling and stability of a base procedure, and $\Psi_{\text {test }}$: based on testing; used-specified $\alpha \in(0,1)$

$$
\begin{aligned}
\Psi_{\text {stable }}: & \mathbb{E}\left[\operatorname{FD}\left(\hat{x}, x^{\star}\right)\right] \leq \sum_{k} \frac{q_{k}^{2}}{\left|\mathcal{S}_{k}\right|(1-2 \alpha)}, \\
\Psi_{\text {test }}: & \mathbb{P}\left(\operatorname{FD}\left(\hat{x}, x^{\star}\right)>0\right) \leq \alpha|\mathcal{S}|
\end{aligned}
$$

- $\mathcal{S}_{k}=$ restriction of \mathcal{S} to a specific rank
- $q_{k}=$ avg. discoveries by base procedure w.r.t. specific rank

Experiments
Ranking educational systems: improving ranking of countries based on new PISA test scores: base ranking from 2015 scores

- new ranking from 2018 test scores using our algorithm with $\Psi_{\text {test }}$ with family-wise-error control at level 0.05
Causal discovery from biological data: identifying causal relationships among proteins from Sachs dataset
- CPDAG estimated using our algorithm with desired FD level $=2$

