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Motivation

Model selection with Boolean-logical structure:
• formulate and test hypothesises, e.g. is this variable present?
• easy to define model complexity and false positives

What about for problems that lack Boolean-logical structure?
• ranking: global structure of transitivity
• clustering: global structure of set-partitions
• causal inference: global structure of acyclicity
• continuous problems, e.g. blind-source separation

Shortcomings of the standard perspective

Example I: clustering
true clusters = {a, b}, {c} estimated clusters = {a, b, c}

Boolean-logical perspective: FD = 2

Example II: causal structure learning
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(a) true CPDAG (b) estimated CPDAG
Boolean-logical perspective: FD = 4

Model organization via posets

Models organized according to a poset L with relations ⪯:
Attribute Meaning

⪯ containment between simpler & more complex models
least element the “null" model representing no discoveries

rank(·) measures complexity of a model

False discovery framework

Similarity valuation: A symmetric function ρ : L × L → R with:
• 0 ≤ ρ(x, y) ≤ min{rank(x), rank(y)} for all x, y ∈ L,
• ρ(x, y) ≤ ρ(z, y) for all x ⪯ z,
• ρ(x, y) = rank(x) if and only if x ⪯ y.

Definitions

Letting x⋆ ∈ L be a true model and x̂ ∈ L be an estimate.

TD(x̂, x⋆) ≜ ρ(x̂, x⋆),
FD(x̂, x⋆) ≜ rank(x̂) − ρ(x̂, x⋆) = rank(x̂) − TD(x̂, x⋆),

FDP(x̂, x⋆) ≜ rank(x̂) − ρ(x̂, x⋆)
rank(x̂)

= FD(x̂, x⋆)
rank(x̂)

.

Goal: maximize rank subject to false discovery control

Suitable similarity valuation: ρmeet(x̂, x⋆) ≜ max
z⪯x̂,z⪯x⋆

rank(z).

• FD in clustering:
# groups in the coarsest common refinement minus # groups in x̂

Example I: common refinement = {a, b}, {c} ⇒ FD(x̂, x⋆) = 1

• FD in causal:
# edges in x̂ minus #edges in a densest CPDAG

that contains conditional dependencies encoded in both x̂, x⋆

Example II: densest =
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⇒ FD(x̂, x⋆) = 2

Other appropriate similarity valuations in e.g. total ranking,
subspace selection and blind source separation

Greedy approaches to model selection

Starting from least model, greedily grow model complexity
Key ingredients:
• data-driven function Ψ: measures statistical significance for moving
between neighboring models
• minimal set of neighboring models S : accounting for invariances

Theorem: Ψstable: based on subsampling and stability of a base pro-
cedure, and Ψtest: based on testing; used-specified α ∈ (0, 1)

Ψstable : E[FD(x̂, x⋆)] ≤
∑
k

q2
k

|Sk|(1 − 2α)
,

Ψtest : P (FD(x̂, x⋆) > 0) ≤ α|S|.

• Sk = restriction of S to a specific rank
• qk = avg. discoveries by base procedure w.r.t. specific rank

Experiments

Ranking educational systems: improving ranking of countries
based on new PISA test scores: base ranking from 2015 scores
• new ranking from 2018 test scores using our algorithm with Ψtest

with family-wise-error control at level 0.05

Causal discovery from biological data: identifying causal rela-
tionships among proteins from Sachs dataset
• CPDAG estimated using our algorithm with desired FD level = 2

2015 base ranking testing approach
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(b) Clustering (c) Causal inference
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(d) Partial ranking

𝜋!"## 𝑎 = 1; 𝜋!"## 𝑏 = 2; 𝜋!"## 𝑐 = 3

inv 𝜋!"##; 𝜋!"## = ∅

inv 𝜋; 𝜋!"## =	 { 𝑎, 𝑏 }

inv 𝜋; 𝜋!"## = { 𝑎, 𝑏 , (𝑎, 𝑐)}

𝜋 𝑎 = 2; 𝜋 𝑏 = 1; 𝜋 𝑐 = 3

𝜋 𝑎 = 3; 𝜋 𝑏 = 1; 𝜋 𝑐 = 2

𝜋 𝑎 = 1; 	𝜋 𝑏 = 3; 𝜋 𝑐 = 2

inv 𝜋; 𝜋!"## =	 𝑏, 𝑐 , (𝑎, 𝑐)
𝜋 𝑎 = 2; 	𝜋 𝑏 = 3; 𝜋 𝑐 = 1

inv 𝜋; 𝜋!"## = 𝑎, 𝑏 , 𝑏, 𝑐 , (𝑎, 𝑐)
𝜋 𝑎 = 3; 𝜋 𝑏 = 2; 𝜋 𝑐 = 1

inv 𝜋; 𝜋!"## = { 𝑏, 𝑐 }

(e) Total ranking


